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We share with Foutis and Randall the evangel that it is not orthomodular 
posers or the like, but manuals of operations that are of primary importance in 
the foundations of the empirical sciences. In sharp contrast to them, we regard 
an operation not as a set of possible outcomes, but as a complete Boolean 
algebra of observable events, which we adopt, following the lines of Davis and 
of Takeuti, as a building block of our empirical set theory. Just as a smooth 
manifold is covered by open subsets of a Euclidean space interconnected by 
smooth mappings, our empirical set theory is covered by the Scott-Solovay 
universes V (a~ over complete Boolean algebras B interconnected by geometric 
morphisms. Using the nomenclature of topos theory, our empirical set theory is 
a subcategory of the category ~3Zop of Boolean localic toposes and geometric 
morphisms. It is shown that in this set theory observables can be identified with 
real numbers. This is the first step of formal development of Davis' ambitious 
program. 

1. I N T R O D U C T I O N  

Although the notion of a manual of operations is apparently 
fundamental in the foundations of the empirical sciences, it was only in the 
1960s that Randall (1966) gave its formal definition and initiated its formal 
theory. His idea was shortly to lead to the so-called Foulis and Randall 
school at Massachusetts, getting gradually not a few excellent students and 
collaborators. While the school has yielded quite a few brilliant results, its 
activity seems to have been confined to the propositional or combinatorial 
level. We feel that we might compare the school to Boole, who was one of 
the pioneers in the modern development of classical logic. 

On the other hand, some mathematicians, physicists, philosophers, 
and the like have proposed to build a higher-order theory or a set theory 
for the foundations of quantum mechanics. Among them Davis (1977) and 
Stout (1979) have great importance for our present research. The former 
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has proposed to use Boolean frames as building blocks, but he has not 
shown explicitly how these building blocks are interconnected nor what 
binds them together. It seems that Davis as well as Takeuti (1983) prefers 
to start from a God-given Hilbert space, in which Boolean frames are 
already interconnected, but we feel that such an approach is too narrow to 
cover the whole quantum theory, let alone the operational foundations of 
all empirical sciences. Stout (1979) not only adopted similar building 
blocks, but also proclaimed logical morphisms as interconnecting 
machinery. 

Now it is our turn. We choose complete Boolean algebras B or, rather, 
their Scott-Solovay universes V (B~ as building blocks. From the standpoint 
of topos theory the latter can be characterized as Boolean localic toposes. 
Radically different from Stout (1979), we prefer geometric morphisms to 
logical morphisms as interconnecting machinery. Just as a smooth 
manifold is a family of open subsets of a Euclidean space interconnected by 
smooth maps, our empirical set theory is a subcategory of the category 
~33;op of Boolean localic toposes and geometric morphisms. We do not feel 
it obligatory to give a formal language for our set theory, because we take 
it that formal languages should play the same role in global set theory as 
coordinates do in global geometry. Although coordinates are a useful tool 
for local calculation, modern geometers are interested in coordinate-free 
properties. In Section 4 it will be shown that the class of observables is 
representable as the class of real numbers in our set theory. 

Remarkably enough, the category ~33;op is equivalent to the category 
~3~or which is the dual category ~3ool of complete Boolean algebras and 
complete Boolean homomorphisms. This may presumably make many 
readers feel comfortable, for a considerably fewer readers will be very much 
more at home in the theory of toposes than in the theory of Boolean 
algebras. Thus our review of complete Boolean algebras and Boolean 
localic toposes in Section 2, which is a prerequisite to understanding the 
subsequent sections, is a bit more leisurely than it should be in a technical 
paper. 

Because of the equivalence of the categories ~3Xop and ~3~oc, the 
combinatorial and propositional aspects of our set theory, which will be 
developed in Section 3, can be dealt with as if our set theory were a 
subcategory of ~3~oc. This has surely enhanced the readability of the paper. 
As far as this level is concerned, we do not feel far away from Foulis and 
Randall's school. We share with them the tenet that orthomodular posets 
or the like are a derived structure of such a more fundamental structure 
as manuals of operations. Although we have neither been their students 
nor their collaborators, we believe that our empirical set theory is a 
dialectical development of their ideas into higher-order levels. 
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Foulis and Randall's (1972, 1978) idea of a manual of operations owes 
much to Kolmogorov (1956), who based the foundations of modern prob- 
ability and statistics upon measure theory. Foulis and Randall prefer to 
consider an operation to be a set of outcomes, but even in measure theory 
it is not the points of a measure space, but the a-field of measurable sets 
or the Boolean algebra of measurable sets modulo null sets that is of 
primary importance, as was demonstrated amply by Segal (1951). Indeed, 
as was shown by Tomita (1952), a large part of measure theory could be 
developed without points over complete Boolean algebras. Similarly, in the 
foundations of empirical sciences, we consider an operation not to be a set 
of outcomes, but to be an algebra of its observable events, which is 
supposed to be a complete Boolean algebra for the sake of so-called 
mathematical idealization. This will enable us to get rid of the clumsiness 
that has haunted Foulis and Randall's school. 

We close this section by fixing some notation and terminology on 
complete Boolean algebras and orthomodular posets. Let B be a complete 
Boolean algebra. A complete subalgebra of B is a subalgebra of B which is 
closed under arbitrary joins and meets. A subset of the form {x s B Ix  ~< a} 
for some a e B, which can naturally be regarded as a complete Boolean 
algebra, is called the relative algebra of B with respect to a and is denoted 
by B I a. A complete subalgebra of some relative algebra of B is called a 
relative complete subalgebra of B. We use 7 for complementation. 

= (L, ~<, 7, 0, 1) be an orthomodular poset, where ~< is the partial 
order on L, 7 is the orthocomplementation, 0 is the least element, and 1 
is the largest element. A subset M of L is called a complete Boolean 
subalgebra of ~ if it satisfies the following conditions: 

(1.1) It is compatible in the sense of Ptfik and Pulmannov~, (1991, 
Definition 1.3.18). 

(1.2) It is closed under orthocomplementation 7. 
(1.3) 1 eM.  
(1.4) For any (possibly empty) family {X~}~.~A in M, ~ /~A XX exists 

in L and belongs to M. 

It is obvious that a complete Boolean subalgebra of ~ is a complete 
Boolean algebra. Given a e L ,  the orthomodular poset ~ I a =  
(L I a, ~<a, 7a, 0, a) is called the relative orthomodular poset of ~ with 
respect to a, where L Ja= {xeL[x<~a},  <~ is the restriction of ~< to 
L[a, and 7~ is the assignment to each x e L l a  of 7x ^ a. A complete 
Boolean subalgebra of some relative orthomodular poser of ~ is called a 
relative complete Boolean subalgebra of~.  

Theorem 1.1. Given relative complete Boolean subalgebras M, N of 
the orthomodular poset 2, the following three conditions are equivalent: 
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(1.5) 

(1.6) 

(1.7) 

The assignment to each x e M of the largest element y among 
the elements z e N  with the property z~<x is a complete 
Boolean homomorphism from M to N. 
For  any x e M ,  whenever y e N  is the largest among the 
elements z E N  with the property z<~x, 7NY is the largest 
among the elements w e N with the property w ~< 7Mx, where 
7M and 7N stand for complementation in complete Boolean 
algebras M and N, respectively. 
There exists an element z of L such that z ~ 1 M, z is compatible 
with any element of M, and the complete Boolean algebra 
{z/x x I x �9 M} is a complete subalgebra of N, where 1M is the 
unit element of M. 

Proof Trivially (1.5) implies (1.6). To see the converse, it suffices to 
note that the assignment depicted in (1.5) always preserves nonempty 
meets. If (1.5) holds, the unit element of N is easily seen to be able to play 
the role of z in (1.7). To see that (1.7) implies (1.6), it suffices to note that 
for any x e M, z A x is the largest among the elements w e N with the 
property w<~x, which implies in particular that z ^ 7 M x = z  ^ 7x  is the 
largest among the elements u e N with the property u ~< 7~tx. �9 

Given an orthomodular poset 2 = (L, ~<, 7, 0, 1), an observable ~ on 
2 is an ~-homomorphism from the set ~ ( R )  of Borel subsets of R into 2. 
We denote by (9(2) the totality of observables on 2. 

If 2 is a complete Boolean algebra, we have the following nice 
representation theorem, for the proof of which the reader is referred, e.g., 
to Varadarajan (1968, Theorem 1.4). 

Theorem 1.2. Let B be an a-complete Boolean algebra and E its 
Stonean space, so that B is isomorphic to the a-field of Borel subsets of E 
modulo the a-ideal J of meager Borel subsets of E. It is easy to see that 
any real-valued Borel function ~o on E gives an observable assigning, to 
each E e  ~(R) ,  ~o a(E)modulo J ,  which yields a bijective correspondence 
between the observables on B and the real-valued Borel functions on E 
with the proviso that we identify two real-valued Borel functions on E 
agreeing except for some meager Borel subset of E. 

2. BOOLEAN LOCALES AND BOOLEAN LOCALIC TOPOSES 

This section is essentially a review, and a large part of it can be 
regarded as a special case of the general theory of locales and localic 
toposes, for which the reader is referred to Bell (1988, Chapter6  in 
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particular), Goldblatt (1979, w of Chapter 11 and w of Chapter 14 in 
particular), and MacLane and Moerdijk (1992, Chapter IX in particular). 

The category of complete Boolean algebras and complete Boolean 
homomorphisms (i.e., Boolean homomorphisms preserving all infinite joins 
and meets) is dented by ~3ool. It is easy to see that ~3ooI is a full 
subcategory of the category of frames (=complete Heyting algebras) and 
morphisms of frames (=functions preserving finite meets and arbitrary 
joins). The trivial Boolean algebras are the terminal objects of ~3ool. 

Every poset and every complete Boolean algebra in particular can be 
regarded as a special kind of category in which for any ordered pair of 
objects there exists at most one morphism from the former object to the 
latter. In this sense any complete Boolean homomorphism f: B 1 ~ B 2 of 
complete Boolean algebras can be regarded as a functor preserving all  
limits and colimits. The following result is well known (see, e.g., MacLane 
and Moerdijk, 1992, Lemma 1 ofw 

Theorem 2.1. Any complete Boolean homomorphism f:  B 1 ~ B2 of 
complete Boolean algebras has a right adjoint g: B2 ~ B1 in the sense that 
for any x e B1 and any y ~ B2,  f(x) <~ y in B2 iff x <~ g(y) in B1. 

Outline of the Proof The desired g is defined to be g (y)=  
V {x~B11f(x)<~y} for a l l yEB 2. �9 

It is well known that any atomic complete Boolean algebra B can be 
identified with the power set ~(X) of some (essentially unique) set X. 
Indeed X can be taken as the set of atoms of B. In this sense complete 
Boolean algebras can be regarded as a pointless or atomless generalization 
of the notion of the power set of a set. Given sets X and Y, any function 
~0: X ~  Y induces a complete Boolean homomorphism ~0-1: ~(Y) + ~(X) 
assigning to each subset of Y its inverse image under ~0. We know well the 
following result. 

Theorem 2.2. Given sets X and Y, any complete Boolean 
homomorphism f:  ~ ( Y ) +  ~(X) can be written as f =  r for a unique 
function ~0: X ~  Y. 

Outline of the Proof For any xEX, the set ~ x = { Z ~ ( Y )  I 
x e f ( Z ) }  is a ultrafilter of ~(Y). Since/(N ~ ) =  n { f ( z )  l z e ~ x }  ~ {x}, 
N ~x is nonempty. Indeed it is easy to see that 0 ~x consists of a single 
element y of Y. By setting r = y, we get the desired function. �9 

This theorem encourages us to give a more fundamental role to the 
opposite category ~3s of ~3ooI than to the category ~3ool itself. The 

902/32/8-2 
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objects of ~ o c  are called Boolean locales and denoted by X, Y . . . . .  If an 
object X of 23~oc is regarded as the object of ~3ooI, it is denoted by ~'(X). 
A Boolean locale X is called trivial if ~(X) is a trivial Boolean algebra. The 
trivial Boolean locales are the initial objects of the category ~3!~oc. Given 
a Boolean locale X and x e N(X), X Ix denotes the Boolean locale with 
~ ( X ] x ) = N ( X ) l x .  The morphisms of ~ o c  are denoted by f,g . . . . .  
Given a morphism f: X-~ u in ~3!~oc, its corresponding morphism from 
r to r in ~3ooI is denoted by f* and is called the inverse image 
function of f by abuse of the term, while the right adjoint of f* in 
Theorem 2.1 is denoted by f , .  

Theorem 2.3. The category ~aoI is complete. 

Outline of the Proof It suffices to note that the category ~n~ of sets 
and functions is complete and that the forgetful functor ~3oo1 ~ ~n~ creates 
limits. �9 

Corollary 2.4. The category ~ o c  is cocomplete. 

We denote by ~3;op the category of Boolean localic toposes and 
geometric morphisms. The objects o f  ~33;op are denoted by ~, Y . . . . .  
while the morphisms of ~3;op are denoted by tt, g . . . . .  The direct image 
part of a geometric morphism ff is denoted by f , ,  while its inverse image 
part is denoted by tt*. The following result is well known in the general 
theory of Boolean localic toposes (e.g., Bell, 1988, Chapters 4 and 6). 

Theorem 2.5. The elements of the subobject classifier of a Boolean 
localic topos N naturally forms a complete Boolean algebra, denoted by 
f2(N), and the topos ~ is determined uniquely by the complete Boolean 
algebra f~(N) up to equivalence. 

Given a complete Boolean algebra B, there are several methods of 
producing a Boolean localic topos whose complete Boolean algebra of the 
elements of the subobject classifier is isomorphic to B: to mention a few, 
the Scott-Solovay universe V/m as a standard construction of models in 
modern set theory, the category Sh(B) of sheaves of sets on B by analogy 
to the category of sheaves ot" sets on a topological space, the category 
~ B  of B-valued sets, the category ~rt~EB ~ of complete B-valued sets, 
the category B of B-fuzzy sets . . . . .  By Theorem 2.5 these categories are 
all equivalent, but in this paper the category ~n~EB3, which is a full 
subcategory of ~n~B, has preference among them. 
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A B-valued set is a pair of a set X and a function [ - =  .~Bx: X x X ~ B  
satisfying: 

I x =  x' l"~= ~x'= xl~ (1) 

Ex=x'~ A ~x'=x"l"~<~ ~x=x"]"~ (2) 

for all x, x', x " e  X. 
Given a B-valued set (X, [~ .= .~ ) ,  

singleton if it satisfies 

q~(x) A Ix = x ' l~  

q,(x) 

~o(x) A ~o(x') 

a function q): X ~  B is called a 

~< ~o(x') (3) 

~< [[x = x]l Bx (4) 

~<[[x= , B x l ~  (5) 

for all x, x ' e  X. It is easy to see that any x e X gives rise to a singleton {x} 
assigning, to each x ' e X ,  I x = x ' ] ~ e B .  The B-valued set (X, ~.=-~Bx) is 
said to be complete if every singleton is of the form {x} for a unique x e X. 
The B-valued set (X, [ . = . ~ R  x), even if it is not complete, can give rise 
canonically to a complete B-valued set (X', ~. = .]~), where J~ is the set 
of singletons of the B-valued set ( X , [ . = . ] ~ )  and [ ~ o = r  
Vx~x(cp(x) A r  for all cp, r inX. The B-valued set ()~, E-= . ]~- ) i s  
called the completion of (X, [[. = '~ ~c). 

A morphism from (X, ~. = - ~ )  to (Y, ~. = .]~) in the category ~n~B of 
B-valued sets is a function f:  X x Y--, B satisfying 

.<  , Ix = x']" A f (x ,  y) -~ f ( x ,  y) (6) X 

f (x ,  y) A I y =  y']" <~ f (x ,  y') (7) Y 

f (x ,  y) A f (x ,  y') <~ ~y= ' " y I ~ (8) 

V f(x ,  y) = Ix = x) ~ (9) 
y e Y  

for all x , x ' ~ X ,  and y , y ' e Y .  Any morphism f:  (X, l[.=.l~.) 
(Y, E = '9 ~) of B-valued sets canonically gives rise to a morphism 

of their completions, where 

7(~, r  V ((p(x) A ~p(y) A f (x ,  y)) 
x ~ X  
y ~ Y  

The morphism f is called the completion off .  

for all ~0e2, C e  
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Given a geometric morphism ff --- (if,, f*): ~ --* Y of Boolean localic 
toposes, since tt* is left adjoint to g, and is left exact, if* naturally induces 
a complete Boolean homomorphism f*: ~(Y) --+ f~(%) of complete Boolean 
algebras. The general theory of geometric morphisms yields the following 
result (e.g., MacLane and Moerdijk, 1992, Chapters VII and IX), 

Theorem 2.6. The mapping ff ~ f* explained above gives a bijective 
correspondence between the geometric morphisms from ~ to Y and the 
complete Boolean homomorphisms from ~(Y) to fl(N). 

To enable the reader to have a firm grip upon the above corre- 
spondence, we are going to present its inverse correspondence in the case 
that ~ and Y are respectively of the form ~n~eB ~ and ~n~eB, ] for some 
complete Boolean algebras B and B', in which f~(~n~[B]) and f~(~n~[B,3) 
can naturally be identified with B and B', respectively. Let f*:B'--*B 
be a complete Boolean homomorphism of complete Boolean algebras, 
which naturally gives rise to functors f,:~n~[a]--*~n~En, ] and f*: 
~n~[B,3 ~ ~n~[B3; where: 

(a) f* assigns to each B'-valued set (X, E.=.]~')  the completion of 
the B-valued set (X, f*(F-= .] ~')). 

(b) f ,  assigns to each B-valued set (Y, (--=.]~) the completion of 
the B'-valued set (Y, f , (~-= 11)), where f ,  is the right adjoint 
to f* in Theorem 2.1. 

(c) if* assigns to each morphism f: (X, ([.=.]ax')~(x' ,  F .= .~ ' , )  of 
~n~[B,] the completion of the morphism 

f*(f( .,. )): (X, f*( E.= .] g) --, (X', f*([-. = .] ~;)) 

of ~n~B. 
(d) if, assigns to each morphism g: (Y, E . = . ] ~ ) ~  (Y', E . = . ~ , )  of 

~n~[B] the morphism 

~,(g): f,((Y, [-.= .~Br) ) -~ f,((Y',  It.=-~ ~,)) 

of (~n~eB, 3 with 

~,(g)(~0, ~9) = V (~o(y) A O(Y') A f , (g(y,  y'))) 
y ~ Y  

y'  e Y'  

for all singletons ~0 of (Y, f , ( ~ . = - ~ ) )  and all singletons ~ of 
( r ' ,  f,([F. = .~ ~,)). 

It i s  easy to see that tt* is left exact. It is not difficult to see, 
though somewhat tedious, that a natural isomorphism between the 
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bifunctors @n~EB](ff*,-- ) and ~n~eR, ] ( - - , f ._ ) ,  both o f  which are 
op from ~rt~eB,]x~rtstB] to ~rt~, is provided by assigning, to each f in 

ert~cB](~*((X, [[. = ,~ ~')), (Y, ~-= .]~)) the morphism g from (X, ~. = "~x') 
to the completion of ( Y , f , ( ~ - = . ~ , ) )  with g(x, tk )=Vy~y(r  
f . ( f ({x} ,  y))) for all x e X and all singletons of (Y, f.(E- = "~ By)). Thus we 
get a geometric morphism f = ( f . ,  tt*): @ne[B] --* @rt~EB,], which is readily 
seen to induce the given complete Boolean homomorphism f*. 

By simply combining Theorems 2.5 and 2.6, we have the following 
result. 

Theorem 2.7. The categories ~3~oc and ~33;op are equivalent. 

It is this theorem that will enable us in the succeeding section to 
develop the combinatorial theory of manuals of Boolean locales and that 
of manuals of Boolean localic toposes in a completely parallel manner. But 
it is at this point that we depart  decisively from Foulis and Randall's 
school, whose considerations have been confined to combinatorial 
discussions on the propositional level. 

A morphism f: X ~ Y of Boolean locales is called an embedding if its 
inverse image function f * : N ( Y ) ~ ( X )  is surjective. Two embeddings 
f: X ~ Y and f': X' ~ Y with the same codomain Y are said to be equivalent 
if there exists an isomorphism g: X ~ X' in ~3~oc with f = f' o g. A geometric 
morphism tt: ~ ~ V of Boolean localic toposes is called an embedding if its 
direct image functor f ,  is full and faithful. Two embeddings tt: X ~ Y and 
~': ~ '  --, Y with the same codomain Y are said to be equivalent if there 
exists an isomorphism ~: ~-- ,  X' in ~3;op with f = f ' o ~ .  The following 
well-known coincidence (e.g., MacLane and Moerdijk, 1992, Proposition 5 
ofw will also be of use in the next section. 

Theorem 2.8. Let f: X ~ Y be a geometric morphism of Boolean 
localic toposes with f*: f ~ ( Y ) ~  f2(X) its corresponding complete Boolean 
homomorphism of cBas. Then f is an embedding iff f* is surjective. 

Corollary 2.9. The equivalence between the categories ~3t3oc and 
~3Xop in Theorem 2.7 respects embeddings of both categories. 

Now we are going to determine the embeddings in ~ o c .  Given an 
embedding f: X ~ Y in ~3~oc, the operation j = f ,  o f* on N(Y) satisfies the 
following conditions: 

x<~jx (10) 

jjx<~ jx (11) 

j(x /x y) = jx /x jy (12) 
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for any x, y ~ # ( Y ) .  Any operation j on ~@(Y) satisfying conditions 
(10)-(12) is called a nucleus on Y. It is not difficult to see that the above 
assignment f ~ - , f ,  of* induces a bijective correspondence between the 
equivalence classes of embeddings into Y and the nuclei on Y. Indeed each 
nucleus j on Y gives rise to a canonical embedding j: Yj ~ Y with ~(Yj)  = 
{ j y [ y ~ ( Y ) }  and j * = j .  Thus, in order to determine the embeddings 
into Y, it suffices to determine the nuclei on Y. Each x ~ ( Y )  gives a 
nucleus y ~ # (Y)  ~--* I x  v y, which is denoted by Jx. The dual ~(Yj~) of Yjx 
is the cBa {y ~ ( Y )  ] I x  < y}, which is isomorphic to the relative algebra 
~ ( Y ) [  x =  { y ~ ( Y ) [ y < < . x }  of ~ (Y)  with respect to x. Conversely we 
have the following result. 

Theorem 2.10. Every nucleus on a Boolean locale Y is of the form Jx 
for a unique x ~ ~(Y).  

Outline of the Proof Given a nucleus j on Y ,  let x = ] j0. It suffices 
to show that for any y ~ ~(Y),  jy  = y iff j0  ~< y. Suppose that jy  = y. Since 
0 ~< y, we have jO <<. jy  = y, which establishes the only-if part. To see the if 
part. suppose that j0~<y. Since j yA]y<<. jy ,  we have j ( j y / x  ]y)<~ 
jjy = jy. And, since 

iy A ]y<~j ( jy  A ]y)<<.jy A j ( j y  A ] y ) = j ( y  A jy  A ] y ) = j 0  

we have jy = (jy A -] y) v y = y, which is the desired conclusion. �9 

A morphism f: X ~ Y of Boolean locales is called a surjection if its 
inverse image function f * : ~ ( Y ) - - * ~ ( X )  is injective. Two surjections 
f: X ~ Y and f':'X ~ Y' with the same domain X are said to be equivalent 
if there exists an isomorphism g: Y --* Y' in ~B~oc with f' = g o f. A geometric 
morphism f: ~ ~ Y of Boolean localic toposes is called a surjection if its 
inverse image functor tf* is faithful. Two surjections f :X--- ,Y and 
~': ~ ~ Y' with the same domain ~ are said to be equivalent if there exists 
an isomorphism g: Y--, Y' in ~!~oc with ~'=go~t. Dually to Theorem 2.8 
we have the following coincidence, for which the reader is referred to 
MacLane and Moerdijk (1992, Proposition 5 ofw 

Theorem 2.11. Let t~: X ~ Y be a geometric morphism of Boolean 
localic toposes with f*: ~ ( Y ) ~  f~(Y) its corresponding complete Boolean 
homomorphism of complete Boolean algebras. Then f is a surjection iff f* 
is injective. 

Corollary 2.12. The equivalence between the categories ~3~oc and 
~33;op in Theorem 2.7 respects surjections of both categories. 
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To conclude this section, we note that every morphism f: X-+ Y of 
Boolean locales is open in the following sense. 

Theorem 2.13. The morphism f*: N(Y)--*N(X) of posets has a left 
adjoint f~: N(X)~N(Y)  satisfying the Frobenius identity L(x A f*(y)) = 
f!(x) A y for all x e N(X), y e N(Y). 

Outline of the Proof Let L(x)=A{yeN(Y)Jx<<. f*(y )}  for all 
x e N(X). Since f* is a complete Boolean homomorphism, it is easy to see 
that for all xeN(X)  and all yeN(Y),  L(x)~<y iff x~<f*(y). The easy half 
of the Frobenius identity L(x A f*(y)) ~< f~(x) A y holds trivially. To see the 
other half of the Frobenius identity L(x/x f*(y)) ~> L(x)/x y, it suffices to 
show that L(x/x f*(y)) v ] y >~ L(x), for which we have to show that for 
any y 'eN(Y),  if f*(y')~>x/x f*(y), then y' v ]y~>L(x). Note that 

f*(y' v ] y ) = f * ( y ' )  v lf*(y)>~ (x A f*(y)) V ]f*(y)~>X 

which implies, by the left adjointness of L to f* established above, that 
y' v ]y~>L(x). l 

3. MANUALS OF BOOLEAN LOCALES AND MANUALS OF 
BOOLEAN LOCALIC TOPOSES 

Let 9X be a small subcategory of the category ~ o c .  A diagram of 
93~oc is said to be in ~J~ if all the objects and morphisms occurring in the 
diagram lie in gX. Boolean locales X and Y in 93l are said to be 
9X-orthogonal, in notation X _1_~ Y, if there exists a coproduct diagram 

X f , Z ~  g Y 

of ~3~oc lying in 9X. A Boolean locale X in ~ is said to be 9Jl-maximal if 
for any Boolean locale Y in ~ ,  X _1_~ Y implies that Y is trivial. Boolean 
locales X and Y in ~ are said to be 9J~-equivalent, in notation X _ ~  Y, 
provided that for any Boolean locale Z in fiX, X _]_~Z iff Y _I_~Z. 
Obviously 9~A-equivalence is an equivalence relation among the Boolean 
locales in ~ .  We denote by [X]~ the equivalence class of X with respect 
to 9~-equivalence. A coproduct diagram 

X f , z <  g Y 

of ~3~oc consisting in 93l is said to be 9J~-proper if for any diagram 

X f'~,Z '<g' Y 
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of ~s  consisting in 9J/, the unique morphism h: Z ~ Z'  making the 
following diagram commutative 

Z ! 

X--~--~ Z ~ Y 

belongs to 9J/, namely, if the coproduct diagram 

X f g ~Z~ Y 

of ~3s is again a coproduct diagram of ~ .  This definition of 
9J~-properness of binary coproducts can be generalized readily to 
coproducts of families of any number of objects in ~R. In particular, a 
trivial Boolean locale X in 9J~, which is an initial object of ~3s and should 
be regarded as a coproduct of the empty family of Boolean locales, is said 
to be 9J~-proper if for any Boolean locale Y in 9J~ the unique morphism 
X ~ Y in ~s  belongs to 9J/. If 

X f g >Z~ Y 

is an 93/-proper coproduct diagram in 9J/, then we say that Z is an 
9Jl-proper coproduct of X and Y, and write Z = X @~ Y. This definition can 
be extended to that of an !lR-proper coproduct ~x~ a 09~ X~. of any infinite 
family {X;o}Z~A of Boolean locales in 93/. An embedding f: X ~ Y in 93~ is 
said to be 9Jl-proper if there exists an embedding g: Z ~ Y in 9J/such that 
the diagram 

X 
f g 

>Y~ Z 

is an 9J/-proper coproduct diagram. A nontrivial Boolean locale X in 93/is 
called an 931-atom if it cannot be written X = Y O ~  Z for any nontrivial 
Boolean locales Y, Z in ~!//. 

A manual of Boolean locales is a small subcategory 9Jl of the category 
~3s satisfying the following conditions: 

(3.1) For any pair (X, Y) of objects in 9J/, there exists at most a sole 
morphism from X to Y in 93~. (Intuitively speaking, if we 
think of Boolean locales X and Y as the outcome sets of 
some operations naively, then the unique morphism is to be  
regarded as the function assigning to each x ~ X the unique 
y ~ Y whose occurrence is secured by the occurrence of x. 
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(3.2) 

(3.3) 
(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

This is why we feel that there should not exist more than one 
morphism from X to Y.) 
For  any Boolean locales X, Y in 9J/, if there exists a morphism 
from X to Y in 9)l, then Y_I_~ Z implies X _L~ Z for any 
Boolean locale Z in 921l. 
There exists at least a trivial Boolean locale in 9)l. 
Every trivial Boolean locale in 93l is 9J/-proper as an initial 
object of ~s 
For  any Boolean locales X, Y in 9J/with X 1 ~n Y, there exists 
a Boolean locale Z of the form Z = X G ~  Y. 
For  any Boolean locale Z with Z = X |  Y in 9J/, X •  W 
and Y .1_~ W imply Z _1_~ W for any Boolean locale W in ~Jl. 
For  any Boolean locale X in ~ and any embedding f: Y ~ X 
of ~3s there exists an ~ - p r o p e r  embedding f': Y' --. X in 9)l 
such that f' is equivalent to f in ~3s 
For any commutative diagram 

X f > Y  

Z 

of ~s  if f is in ~J/ and h is an 9)l-proper embedding in 93l, 
then g is in 921/. 

(3.9) For  any Boolean locales X and Y in 93l, X---~n Y iff there 
exists a Boolean locale Z in 9)l such that X / ~  Z, Y _1_~ Z, 
and both of X @~ Z and Y | Z are 9J/-maximal. 

(3.10) For  any Boolean locale X in 931, if X _L~ X, then X is trivial. 

Given a Boolean locale X in a manual 93l of Boolean locales and 
x e ~(X),  a Boolean locale Y from which there exists an 9J/-proper embed- 
ding into X equivalent to the canonical embedding Xjx ~ X in condition 
(3.7) is denoted by Xx. Boolean locales of the form Xx for some x ~ ~ (X)  
are called 9Jl-sublocales of X. 

A manual 9)l of Boolean locales is called a-coherent if it satisfies the 
following condition besides the above ones: 

(3.5)~ For  any sequence {Xi}e~N of pairwise 9J/-orthogonal Boolean 
locales in 9J/, there exists a Boolean locale Z such that 

Z = ~-~ir N ( ~  Xi.  

A manual 9J/of  Boolean locales is said to be completely coherent if it 
satisfies the following condition: 
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(3.5)oo For  any infinite family {X;.}x~,A of pairwise 9J/-orthogonal 
Boolean locales in 9Y/, there exists a Boolean locale Z in 931 
with Z = ~ ~ A Gs0~ X;. 

It is pertinent examples that invest a perplexingly abstract definition 
with a flavor of reality, and a lavish list of which we are now going to 
present concerning our span-new notion of a manual of Boolean locales. 
Even a set D can give two concomitant examples. Let us begin with the 
more prosaic one. 

Example 3.1. Let D be a set. Our first-kind classical manual 93~o of 
Boolean locales on D has as objects the Boolean locales whose duals are 
the power sets ~ (X)  of all subsets X of D. As this notation suggests, we 
identify each Boolean locale X in 99/0 with the corresponding subset X 
of D. By Theorem 2.2 each morphism of ~3s from a Boolean locale X in 
9J/D to a Boolean locale Y in 9~ o can be identified with a unique function 
f from the subset X of D to the subset Y of D. We decree that f: X ~ Y is 
in 9~D iff f is an identity function of X into Y. Such f can exists iff X ___ Y. 
It is easy to see that Boolean locales X and Y in 9~D are 9J/D-orthogonal 
iff X and Y are disjoint, in which their coproduct of ~3s lying in 9~o is 
solely X w Y. It is also easy to see that Boolean locales X and Y in 93l 0 are 
9Jtz~-equivalent iff X = Y. A Boolean locale X in 93/0 is 9J/D-maximal iff 
X = D .  

The same set D can give an example that is less prosaic than the above 
pristine one. 

Example 3.2. Let D be a set. By a partial partition of D we mean a 
(possibly empty) collection of pairwise disjoint nonempty subsets of D. 
A partial partition X of D is said to be a partial refinement of a partial par- 
tition Y of D if for any x ~ X there exists y ~ Y such that x ~ y. Note that 
such y is determined uniquely by x if it exists. Our second-class classical 
manual TJ/[o 3 of Boolean locales on the set D has as objects the  Boolean 
locales corresponding to the power sets ~ (X)  of all partial partitions X 
of D. As our present notation suggests, each object of 9J/ED 3 is identified 
with a unique partial partition of D. By Theorem 2.2 every morphism of 
~3~oc from a Boolean locale X to a Boolean locale Y can be identified with 
a unique function f from the partial partition X of D to the partial partition 
Y of D. We decree that f is in 93/tD 3 iff X_  f(x) for any x ~ X. It is easy to 
see that such f exists iff X is a partial refinement of Y. It is also easy to see 
that such f is unique if it exists. Note that Boolean locales X and Y in 9J/[D 3 
are 9J/Eo]-orthogonal iff the sets (.J X and U Y are disjoint, in which 
X@~E~ u is X ~ Y .  Note also that Boolean locales X and Y in 9J~Eo ] are 
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9JlEol-equivalent iff U X : U Y. It is easy to see that a Boolean locale X in 
9)~ED 1 is 9JlED?-maximal iff 0 X = D. 

The above examples naturally admit to point-flee generalizations as 
follows. 

Example 3.3. Let B be a complete Boolean algebra. Our first-class 
Boolean manual 9JIB of Boolean locales on B has as objects the Boolean 
locales X whose duals ~ (X)  are the relative algebras B I a =  {x e BIx~< a} 
of B with respect to all a e B. Given Boolean locales X and Y in 931B, we 
decree that a morphism f: X ~ Y of ~ o c  belongs to 9Jl B iff f*(y)  = y/x a 
for any y e ~@(Y), where a is the unit element of N(X). Such f exists iff the 
unit element of ~ (Y)  is larger than or equal to that of N(X). Such f is 
unique if it exists. Boolean locales X and Y in 9)lB are ~B-or thogonal  iff 
the unit elements of N(X) and N(Y) are disjoint, i.e., iff N(X) and ~ (Y)  
are the relative algebras of B with respect to disjoint elements a, b e B, 
in which ~ ( X |  v b. Boolean locales X and Y in ~ B  are 
9)lR-equivatent iff the unit elements of ~ (X)  and ~ (Y)  coincide. A Boolean 
locale X in 9JIB is ~B-maximal iff N(X) is B itself. 

Example 3.4. Let B be a complete Boolean algebra. Our second-class 
Boolean manual 9~EB ~ of Boolean locales on B has as objects all the 
Boolean locales X whose duals ~ (X)  are relative complete subalgebras 
of B. Given Boolean locales X and Y in 9JlE~ l, we decree that a morphism 
f: X-~ Y of ~B~oc is in 9J~EB ~ iff f*: ~ ( Y ) ~  ~ (X)  assigns to each y e ~ (Y)  
the largest element x of r such that x ~< y. Given Boolean locales X and 
Y in ~ERI,  it is easy to see that X and Y are 9Jl~B~-orthogonal iff the unit 
elements of N(X) and ~ (Y)  are disjoint, in which 

N ( X ( ~ c B l  Y ) =  {x v y I x e ~ ( X ) ,  y e N ( Y ) }  

The Boolean locales X and Y in 9)lEe ~ are 9JlEBl-equivalent iff the unit 
elements of ~ (X)  and N(Y) coincide. The Boolean locale X is 
9)lEBl-maximal iff ~ (X)  is a complete subalgebra of B. 

All of the above examples are of a classical nature. The following 
examples of a quantum nature we are now going to give are more 
kaleidoscopic. 

Example 3.5. Let d be a von Neumann algebra acting on a complex 
Hilbert space Jg. Our first-class von Neumann manual 9J(4 of Boolean 
locales on d has as objects the Boolean locales X whose duals N(X) are 
the projection lattices L(C~) of all the commutative von Neumann algebras 
cg satisfying the following conditions: 
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(a) The Hilbert space Jt~ on which <g acts is a closed linear subspace 
of ~ whose corresponding projection 1~ belongs to s~'. 

(b) cg is maximal among the commutative von Neumann subalgebras 
of the reduced von Neumann algebra ~d~ of sr by 1~. 

Given Boolean locales X, Y in 9Jl~, with N ( X ) =  L(Cg) and N ( Y ) =  L(~) ,  
we decree that a morphism f: X --* Y of ~8~oc belongs to 9Jl~, iff <g is the 
induced von Neumann algebra ~E of ~ by some projection E of ~ and f*: 
~(Y)  --) r is induced by the induction of N onto cs It is easy to see that 
X and Y are 9Jl~,-orthogonal iff ~ and Jcg~ are orthogonal subspaces of 
~t', in which ~ ( X ( ~ , ,  Y)=L(Cg x ~).  It is also easy to see that X and Y 
are 9Jl~-equivalent iff .gt~ = .Xr Note that X is 9Jl ~-maximal iff ~ = oug. 
If we take ~d to be the von Neumann algebra of all the bounded linear 
operators on ~ ;  then we have the first-class Hilbert manual ~ = g)l~, of 
Boolean locales on 9f. 

Example 3.6. Let d be a yon Neumann algebra acting on a complex 
Hilbert space rig. Our second-class von Neumann manual 0)lEo,, 1 of 
Boolean locales on sd has as objects the Boolean locales X whose duals 
~(X) are the projection lattices L(Cg) of all the commutative von Neumann 
subalgebras cg of the reduced von Neumann algebras dE of d by all the 
projections E in ~/. Given Boolean locales X, Y in 9}led 2 with 
~(X) = L(Cg) and ~ ( Y ) = L ( ~ ) ,  we decree that a morphism f: X--) Y of 
~3~oc is in 9JILo,, 7 iff we have that: 

(a) The projection 1<~ corresponding to the closed linear subspace 
ocg~ on which cs acts is smaller than or equal to the projection 1 
corresponding to the closed linear subspace ~ on which ~ acts. 

(b) The restriction (l<~)x~ of 1~ to .,ug~ commutes with all the 
operators in 9.  

(c) The yon Neumann algebra ~ r~  consisting of the restrictions T ~  
of all the operators T in ~ to dg~ is a von Neumann subalgebra 
of~ .  

(d) f* is induced by the mapping T ~ - - ) T g ~ E < ~ .  

It is easy to see that the Boolean locales X, Y are 9J~E~,2-orthogonal iff ~fe 
and .gg~ are orthogonal, in which ~(X @~r~,a Y ) =  L(Cg x ~).  It is also easy 
to see that the Boolean locales X, Y are gJlEo,,~-equivalent iff ~ffe= .gg~. 
Note that the Boolean locale X is 9J~E~,l-maximal iff ~ = Jq~. If we take 
~d to be the von Neumann algebra of all the bounded linear operators on 
o'rg, then we have the second-class Hilbert manual 9JIE~o2=gJIEd I of 
Boolean locales on ~f, in which the 9JIEgl-atoms are naturally in bijective 
correspondence with the nonzero closed linear subspaces of rig. 
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Example 3.6 has a natural quantum-logical generalization. 

Example 3.7. Let ~ -- (L, ~<, 7, 0, 1) be an orthomodular poset. Our 
second-class orthomodular  manual ~0~E~] of Boolean locales on ~ has as 
objects the Boolean locales X whose duals ~ (X)  are all the relative com- 
plete Boolean subalgebras of 2. Given Boolean locales X, Y in 9 J ~  1, we 
decree that a morphism f: X ~ Y of ~3~oc is in 9J~ iff there exists an element 
z of L such that: 

(a) l x ~  lv ,  where lx  and lv  are the unit elements of ~ (X )  and 
~(Y),  respectively. 

(b) 1 x is compatible with each element of ~(Y).  

(c) The complete Boolean algebra {y A lx I Y e ~ ( Y ) }  is a complete 
subalgebra of ~(X).  

(d) The inverse function f* of f is yE~(Y)~---, lx A y ~ ( X ) .  

It is easy to see that X and Y are 9JlEa]-orthogonal iff lx  and lv  are 
orthogonal, in which 

~ (X  @m~tal Y ) =  {x v y I x 6 ~ ( X ) ,  y ~ ( Y ) }  

It is also easy to see that X and Y are 931E~]-equivalent iff lx  = Iv. Note 
that X is 9J/Ea]-maximal iff lx  = 1. 

We note in passing that if an orthomodular  poset ~ is a complete 
lattice as well, then we can naturally generalize Example 3.5 so as to obtain 
the first-class orthomodular manual 9J/a of Boolean locales on 9J/ with 
similar results to those in Example 3.7, the details of which are left to the 
reader. 

Our next two examples, which are concerned with the renowned 
notion of a manual by Foulis and Randall (1972, 1978), also have quan- 
tum features while retaining the atomic nature of Examples 3.1 and 3.2. 

Example 3.8. Let X be a Dacey manual in the sense of Foulis and 
Randall (1972, 1978). Elements of ~ are called operations, subsets of which 
are called events. Let D = U Y'. For  any x, y 6 D we write x • y if x r y 
and there exists an operation containing both x and y. For  any subset A 
of D, we write A • for the set { y ~ D ] x _1_ y for any x E A }. Given subsets 
A, B of D, we write A _1_ B if for any x ~ A and any y e B, x 3_ y. Our 
first-kind Dacey. manual 9J~ of Boolean locales on Y" is the full sub- 
category of 93~D in Example 3.1 whose objects are all the events X of Y'. 
Boolean locales X and Y in 9J~. are 9J~:orthogonal  iff X _1_ Y, in which 
X @ ~  Y is X w Y. Boolean locales X and Y in 9J~ are 9J~:equivalent iff 
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X •  •177 A Boolean locale X in 9 ~  is 931.r iff X is an 
operation of Y'. 

Example 3.9. Let 5f be again a Dacey manual in the sense of Foulis 
and Randall (1972, 1978). We use the same nomenclature and notation as 
in the previous example. Our second-kind Dacey manual 9J/[.~] of Boolean 
locales on W is the full subcategory of 9Jl[D 1 in Example 3.2 whose objects 
are all the partial partitions X of D such that U X is an event. Given 
Boolean locales X and Y in 9J/[~], it is easy to see that X and Y are 
9J~-orthogonal iff U X Z U Y, in which X G ~  ~l Y is X u Y. The Boolean 
locales X and Y are 9Jl[~.l-equivalent iff (U x )  ~"  = (U y)• The Boolean 
locale X is 9J~E~]-maximal iff U X is an operation. 

We should note in passing that the manuals of Boolean locales in 
Examples 3.1-3.6 are all completely coherent, while those in Examples 3.8 
and 3.9 are a-coherent (completely coherent, resp.) iff the original Dacey 
manual X is a-coherent (completely coherent, resp.) in the sense of Foulis 
and Randall (1972). The manual 9J~[~] of Boolean locales in Example 3.7 
is a-coherent (completely coherent, resp.) iff the orthomodular poset ~ is 
a-orthocomplete (orthocomplete, resp.). Even in Example 3.2, if we confine 
our consideration to the class of countable partial partitions of D, we can 
get a a-coherent but not completely coherent manual of Boolean locales. 
We encounter a similar situation in the following example. 

Example 3.10. Our Borel manual 9~[R3, of Boolean locales on the 
set R of real numbers is a full subcategory of the second-class classical 
manual 9J/jR ] of 'Boolean locales on R given in Example 3.2. It has as 
objects the Boolean locales X whose duals ~(X) are all the Borel partial 
partitions of R. By a Borel partial partition of R we mean a countable 
collection of pairwise disjoint nonempty Borel subsets of R. Almost the 
same discussion as in Example 3.2 holds for our manual 9J/ER]B, but we 
should note that 9Y/tR]B is only a-coherent, while 9J/jR 1 is completely 
coherent. 

Now we are going to show that a manual 9J/of Boolean locales, which 
shall be fixed for a while, naturally gives rise to an orthocoherent 
associative orthoalgebra ~ ( g J / ) = ( L ~ ,  + ~ , 0 ~ ,  1~). For a short but 
readable introduction to the' theory of associative orthoalgebras, the 
reader is referred to Gudder (1988, w By condition (3.4) in the defini- 
tion of a manual of Boolean locales all the trivial Boolean locales in 93~ 
are isomorphic objects in 9~, and so by condition (3.2) they are all 
9J/-equivalent. We denote their equivalence class by 0~,  which is nonempty 
by condition (3.3). 
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Proposition 3.11. For any trivial Boolean locale X in 9Jl and any 
Boolean locale Y in gJ~, X _1_~ Y. 

Proof By condition (3.4) there exists a unique morphism f from X to 
Y in ~Jl. Thus the coproduct diagram 

X f . ~ y  1~ y 

of ~3~oc lies in 9~R, which shows that X •  Y. �9 

Proposition 3.12. There exists an 9Jl-maximal Boolean locale in 9cJL 

Proof By condition (3.3) there exists at least one trivial Boolean 
locale X in 931. Since X - ~  X obviously, the desired conclusion follows 
from condition (3.9). �9 

Proposition 3.13. Every Boolean locale X in 0~ is trivial. 

Proof By Proposition 3.12 there exists an ~-maximal  Boolean 
locale Y in 921l. By Proposition 3.11 we have X _1_~ Y, which implies that X 
is trivial. �9 

Proposition 3.14. All the gJl-maximal Boolean locales in gJ~ are 
9cJ~-equivalent. Every Boolean locale of 9J~ which is ~)l-equivalent to an 
~-maximal  Boolean locale of 93~ is also ~-maximal.  

Proof By Proposition 3.11 the ~J~-maximal Boolean locales of ~)~ can 
be characterized as the Boolean locales of ~J~ to which exactly the trivial 
Boolean locales of ~J~ are gJl-orthogonal. �9 

We denote by 1~ the class of all the ~-maximal  Boolean locales in ~ .  

Proposition 3.15. For any Boolean locales X, Y in 9J~ with X .• Y, 
we have that X |  Y _1_~ Z iff X _1_~ Z and Y ,1,~j~ Z for any Boolean 
locale Z in ~ .  

Proof This follows readily from conditions (3.2) and (3.6). �9 

Corollary 3.16. Whenever X, X', Y, and Y' are Boolean locales in 
such that X -~j~ X' and Y - ~  Y', then X .1_~ Y iff X' • Y', in which any 
gJ~-proper coproduct of X and Y is gJ~-equivalent to any 9)l-proper 
coproduct of X' and Y'. 

Let L ~ = { [ X ] ~ j ~ I X  is a Boolean locale inOCJ~). By the above 
corollary we can safely decree that [ X ] ~  + ~  [ Y ] ~  is defined iff X _1_~ Y, 
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in which [X]~  +sos [-Y]~ is defined to be [-X 0 ~  Y]~.  Now we have to 
show the following. 

Theorem 3.17. The structure 2~~ (L~, +sos, 0~, 1~) thus 
defined is indeed an orthocoherent associative orthoalgebra. 

Proof It suffices to note the following: 

(a) If X _L~ Y, then X ( ~  Y ~-~ Y O ~  X. 

(b) If X • Y and X O ~  Y LgJ~ Z, then Y _1_~ Z, X _1_~ Y +sos Z, and 
(X Os0~ Y) O~j~ Z ~-~j~ X |  (Yq)~ Z). 

(c) For any X in 93l, there exists Y in 9J/ such that X .1_~ Y and 
X + ~  Y is 9Jl-maximal. If Y' satisfies the same l~roperty, then 
Y___~ Y'. 

(d) If X •  X, then X is trivial. 

(e) I f X •  XJ_~Z,  a n d Y L ~ s Z ,  t h e n X ( ~ Y •  

The statements (a), (b), and (e) are obvious by Proposition 3.15. The 
statement (c) follows from condition (3.9), while the statement (d) follows 
from condition (3.10). [] 

The associative orthoalgebra 5e(gJl) thus obtained is called the 
associative orthoalgebra associated with 9JL It is well known that the 
notions of an orthocoherent orthoalgebra and an orthomodular poset are 
essentially equivalent concepts, for which the reader is referred to Gudder 
(1988, Corollary 3.4 and Theorem 3.5). The orthomodular poset _~(gJl) = 
(Lg~, ~<s0~, -]~, 0~, 1~) corresponding to s is called the orthomodular 
poser associated with 9JL Given [X]~s e L~,  the relative manual 9J/[ [X]~  
of 9J/with respect to [ X ] ~  is a full subcategory of 931 whose objects are 
all the Boolean locales Y in 93l with [Y]~  ~<~ [X]sa. It is easy to see 
that for any Boolean locale Y in 93l [ [X]~ ,  [Y]s0s = [Y]~  i Exit, so that 
~(~1 [x]~)= ~(~)1 [x]~. 

Proposition 3.18. If the manual 9Jl of Boolean locales is a-coherent 
(completely coherent, resp.), then the orthomodular poset 2(93l) associated 
with 9J/is a-orthocomplete (orthocomplete, resp.). 

The following proposition is also of some interest. 

Proposition 3.19. For any isomorphism f: X --* Y of ~Bool lying in 93l, 
its inverse f-1 belongs to 9J/iff f is 9~-proper as an embedding. 
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Proof 
following commutative diagram: 

To see the if part of the above statement, consider the 

y 1y ) y 

X 

Then the desired conclusion follows from condition (3.8). To see the only-if 
part of the statement, let W be a trivial Boolean algebra in 93l. Then the 
coproduct diagram 

X--5--~f Y ,  W 

is 9~-proper, since for any morphism g: X ~ Z in 931 we have the following 
commutative diagram in 931: 

Z 

X f , Y ~  W �9 

Now we are in a position to discuss morphisms between manuals of 
Boolean locales. A morphism from a manual ~ of Boolean locales to 
another one 91 is a functor F from the category 9)l to the category 91 
satisfying the following conditions: 

(3.11) F preserves trivial Boolean locales. That is, if X is a trivial 
Boolean locale in ~J~, then F(X) is a trivial Boolean locale 
in 91. 

(3.12) F preserves proper binary coproducts. That is, if X and Y are 
Boolean locales in 9X with X _1_~ Y, then F(X) _1_~ F(Y) and 
F(X O~0, Y) = F(X) On  F(Y). 

(3.13) F preserves maximal Boolean locales. That is, if X is an 
9X-maximal Boolean locale, then F(X) is an JV-maximal 
Boolean locale. 

A morphism F from a manual 93/of Boolean locales to another 91 is 
called ~-orthocomplete (orthocomplete, resp.) if it satisfies the following 
condition (3.12)~ [(3.12)~, resp.]: 

(3.12)~ If Y = Z i ~ v O ~ X i  with {Xi}i~N a sequence of pairwise 
~-or thogonal  Boolean locales in 9J/, then F(Y) = 
Zi~ N 09~ F(Xi). 

902/32/8-3 
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(3.12)~ If Y=~-'~,2~A~X;, with {X~}~A an infinite family of 
pairwise 9Jl-orthogonal Boolean locales in 93l, then F(Y)= 
Z~ ~ ~ @~ F(X~). 

A morphism F from a manual 9J/ of Boolean locales to another 91 is 
called atomic if it satisfies the following condition: 

(3.14) If X is an 992-atom, then F(X) is either an ~ - a t o m  or a trivial 
Boolean locale. 

Proposition 3.20. If F: 9~ ~ 91 is a morphism of manuals of Boolean 
locales, then X ~-~ u in ~ always implies F ( X ) - ~  F(Y) in 91. 

Proof Since X-~wl Y by assumption, we have by condition (3.9) a 
Boolean locale Z in 9~ such that X _1_~ Z, Y _L~ Z, and both of X |  Z 
and Y O ~  Z are 9~-maximal. This means by conditions (3.12) and (3.13) 
that F(X) J_9~F(Z ), F(Y)_Lg~F(Z), and both of F(X)O~F(Z)  and 
F(Y) | F(Z) are JV-maximal, which implies by condition (3.9) again that 
F(X) ---9~ F(Y). [] 

By this proposition we can see easily that a morphism of manuals of 
Boolean locales naturally induces a homomorphism of their associated 
associative orthoalgebras and a morphism of their associated 
orthomodular posets. In particular, if two manuals of Boolean locales are 
isomorphic, their associated associative orthoalgebras as well as their 
associated orthomodular posets are isomorphic. 

Two manuals 9J/, 9/of  Boolean locales are said to be equivalent if there 
exist morphisms F: 9J/~ 9l and G: 91 ~ 93/such that the functors G o F and 
FoG are naturally equivalent to the identity functors I~ and Iv, respec- 
tively. It is not difficult to see that equivalent manuals of Boolean locales 
have isomorphic associated associative orthoalgebras as well as isomorphic 
associated orthomodular posers. 

NOW we give some examples of morphisms of manuals of Boolean 
locales. 

Example 3.21. Let f:  D ~ E  be a function. As in Example 3.1 we 
identify Boolean locales in 9J/D (in 9J/E, resp.) with subsets of D (of E, 
resp.). Let F f ( X ) = f  I(X) for any X _ E .  Since X___Y implies 
f - l ( X  ) ~ f - l ( y )  for any subsets X, Y of E, Ff can naturally be extended 
to an orthocomplete morphism from 93~E to 9~o. It is not difficult to see 
that any orthocomplete morphism from 9J/E to 9J/D can be obtained from 
a unique function from D to F in this manner. The situation is somewhat 
similar to that in Theorem 2.2. 
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Example 3.22. Let f :  D--* E be a function again. As in Example 3.2 
we identify Boolean locales in 9)~ED J (in 9Jl~e 2, resp.) With partial partitions 
of D (of E, resp.). Let F I ( Y ) =  { f  l(y) I y e Y ,  f - l ( y )  is nonempty} for 
any Boolean locale Y in 9JlEe 2. One can naturally extend F:. to an 
orthocomplete atomic morphism from 9JIEE 1 to 9JlEo J. It is not difficult to 
see that any orthocomplete atomic morphism from 9Jl~e 2 to 9RED J can be 
obtained from a unique function D to E in this manner. 

Our next objective is to identify observables of nonrelativistic 
quantum mechanics with a special class of morphisms from the Borel 
manual ~ E R ~  of Boolean locales on R to the second-class Hilbert manual 
9JIE~e I of Boolean locales on a complex Hilbert space ~f'~. 

Example 3.23. In the standard formulation of nonrelativistic quan- 
tum mechanics after von Neumann are observables represented by 
self-adjoint operators on a complex Hilbert space J r ,  which are in bijective 
correspondence with spectral measures on R. By identifying Boolean 
locales in 9JlE~lB with their corresponding countable Borel partial parti- 
tions of R, each spectral measure (p on R naturally induces an atomic 
a-orthocomplete morphism F~o:gcJI~R~9)IE~e I with ~(F~o(X)) for a 
Boolean locale X in ~)lc~B being the projection lattice of the commutative 
von Neumann algebra ~ satisfying the following conditions: 

(a) cg acts on the closed linear subspace Yfx of ~f  whose correspond- 
ing projection lx is (p(U X). 

(b) cg is generated by the family {cp(x)lx I x~X} ,  where q~(X)lx is the 
restriction of ~0(x) to Ygx. 

It is not difficult to see that any atomic rr-orthocomplete morphism 
F: 9)IEI~2B ~ 9)IE~ J of manuals of Boolean locales can be written as F =  F~ 
for a unique spectral measure ~0 on R. 

Example 3.24. Let Y" and ~ be Dacey manuals in the sense of Foulis 
and Randall (1972, 1978). As in Example 3.8 we identify Boolean locales in 

(in ~ ,  resp.) with events in Y" (in ~ ,  resp.). Any interpretation ~0: 5F ~ 
in the sense of Foulis and Randall (1978) induces naturally an orthocom- 
plete morphism F~: ~ r  ~ ~ ,  with F~o(X)= ~0(X) for any Boolean locale 
X in ~ f .  It is not difficult to see that conversely any orthocomplete 
morphism F: 99/~r--, 9Jt~, can be written as F =  F~ for a unique interpreta- 
tion (p: 5~" --* ~ .  

By dint of Theorems 2.7 and 2.8 we can define the notion of a manual 
of Boolean localic toposes and develop its combinatorial theory in a corn- 
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pletely parallel manner to that of a manual of Boolean locales. What we 
need to mention here is only that manuals of Boolean localic toposes are 
denoted by J/g, Jff . . . .  in distinction to 9~, 9l, . . .  for manuals of Boolean 
locales are used also for manuals of Boolean localic toposes [e.g., ~(J//) 
denotes the orthomodular poset associated with Jg].  

4. O B S E R V A B L E S  = R E A L  N U M B E R S  

In this section we impose four further somewhat delicate conditions on 
a manual 9J/ of Boolean locales besides conditions (3.1)-(3.10), which 
enables us to concentrate our consideration on the class of manuals of 
Boolean locales of utmost importance. Indeed, among Examples 3.1-3.10, 
only Examples 3.2, 3.4, and 3.6 satisfy all four conditions. Among"these 
three examples, only Example 3.6 enjoys quantum features, while the other 
two are of classical nature. 

The first condition we impose on ~ brings us considerably closer to 
an approach to the foundations of quantum mechanics using orthomodular 
posets. 

(4.1) Given a Boolean locale X in 93/, if {X~}),~A is a family of 
mutually disjoint elements of ~(X), then any two of the 
Boolean locales in the family {Xx~}X~A are 9J/-orthogonal and 

Xw~, ,~=  ~] @~Xx~ 
2 ~ A  

Condition (4.1) yields the following theorem at once. 

Theorem 4.1. Let X be a Boolean locale in 9~. Then the assignment 
X Ix w-~ Xx (x ~ ~(X)) is an orthoc0mplete morphism from the first-class 
Boolean manual 9Jl~x) of Boolean locales on the complete Boolean 
algebra ~(X) to the relative manual ~ 1  [Xx]~j~ of 93l with respect to 
[x]~. 

Corollary 4.2. Let X be a Boolean locale in 9)l. Then the assignment 
x ~ ( X ) w - ~ [ X x ] ~  is an injective orthocomplete morphism of ortho- 
modular posets from the complete Boolean algebra ~(X) into the 
orthomodular poset ~(g)l [ [X]s~)= ~(gJl) [ [X]~ .  

Proof That the assignment is indeed an orthocomplete morphism of 
orthomodular posets follows from the above theorem and the remark given 
just after Proposition 3.20. The injectivity of the assignment follows from 
condition (3.10). �9 
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The assignment in Corollary 4.2, which can be regarded as a function 
from ~(X) to ~(gJ/), is denoted by 6x. By a standard juggling with 
orthomodular posets we come to know from Corollary 4.2 that the assign- 
ment 3x gives a natural isomorphism of the complete Boolean algebra 
~(X) with a relative complete Boolean subalgebra Bx of the orthomodular 
poset ~(gJl). In this sense we now stand in close proximity to what is called 
quantum logic. 

The second condition we impose on ~ goes as follows: 

(4.2) Given Boolean locales X, Y in ~ ,  there exists a morphism 
f: X ~ Y in 9J/iff the assignment to each y e N(Y) of the largest 
element x of r with [-Xx]~<~ [Yy]~ is a complete 
Boolean homomorphism. If this happens, the inverse image 
function f* of f is this assignment. 

We must notice that once conditions (4.1) and (4.2) are imposed on 
TJ/, condition (3.8) becomes redundant. Indeed conditions (3.7) and (4.2) 
give at once the following result. 

Proposition 4.3. Given Boolean locales X, Y in 93/, X is an 
931-sublocale of Y iff the complete Boolean algebra Bx is a relative algebra 
of the complete Boolean algebra By. 

Corollary 4.4. Condition (3.8) is derivable from the other conditions. 

A surjection f : X ~ Y  lying in 9J/ is said to to 9Jl-proper if 
EX]~ = [Y]s0~, in which Y is called an 9X-quotient locale of X. Dually to 
Proposition 4.4, condition (4.2) gives at once the following result. 

Proposition 4.5. Given Boolean locales X, Y in 9X, X is an 
0X-quotient locale of Y iff the complete Boolean algebra B x is a complete 
subalgebra of the complete Boolean algebra By. 

Corollary 4.6. For any commutative diagram 

X f ~ Y  

Z 

of ~3~oc, if f is in 9X and g is an 9J/-proper surjection in 9~, then h is in 9X. 
Two Boolean locales X, Y in 93l are said to be 9Jl-compatible if for any 

x ~ # ( X )  and any y ~ ( Y ) ,  [Xx]~ and EYy]~ are compatible in the 
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orthomodular poset ~ (~ ) .  Intuitively speaking, the third condition we 
impose on g)l proclaims the existence of a grand operation refining all 
the operations in an arbitrarily given family of mutually compatible 
operations: 

(4.3) For any family {X~}~ A of mutually 9J~-compatible, 
9J/-maximal Boolean locales in 93l, there exists a Boolean locale 
X in 9J/such that X;~ is a 9Jl-quotient locale of X for all 2 e A. 

The fourth condition we impose on 99l is dual to condition (3.7): 

(4.4) For any Boolean locale X in 99l and any surjection f: X ~ Y of 
~3~oc, there exists an 9Jl-proper surjection f': X ~ Y' in 9J/such 
that f' is equivalent to f in ~3~oc. 

Condition (4.3) together with the other three conditions introduced in 
this section is strong enough to ensure 93l complete coherence. To show 
this, we note first the following. 

Theorem 4.7. For any family {x~};~A of mutually compatible 
elements in the orthomodular poset .~(gJl) there exists an 9J/-maximal 
Boolean locale X such that the complete Boolean algebra Bx contains the 
family {xx}~ A and is generated by the family {X~}x~A. 

Proof By conditions (3.9) and (4.4) there exists a family {Xa};~A of 
9J/-maximal Boolean locales in 9J/such that the complete Boolean algebra 
Bx~ is generated solely by x~ for each 2 e A. It is easy to see that the family 
{X;.}a~A consists of mutually 9Jl-compatible Boolean locales, which 
ensures by condition (4.3) the existence of a Boolean locale Y in 9Jl such 
that the complete Boolean algebra By contains the family {x~}~ A. By 
condition (4.4) there exists an 9J~-quotient locale X of Y satisfying the 
required conditions. �9 

Corollary 4.8. Given 9J/-maximal Boolean locales X, Y in 93l, if the 
complete Boolean algebras ~(X) and N(Y) are generated by families 
{X2}2e A and {Y~}r~r, respectively, such that [Xx)] ~ and [Yy,]~ are 
9J/-compatible for any 2 e A  and any 7eF ,  then X and Y are 
9J/-compatible. 

Proof By Theorem 4.7 .there exists an 9J/-maximal Boolean locale Z 
such that the complete Boolean algebra B z contains [ X ~ ] ~  and [Yy~]~ 
for all 2 ~ A and all 7 e F. It is easy to see that the complete Boolean 
algebras B x and B v are complete subalgebras of the complete Boolean 
algebra Bz, which implies the desired conclusion. �9 

Now we are ready to establish the following result. 
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Theorem 4.9. ~ is completely coherent. 

Proof Let {X;.})+~ A be an infinite family of mutually 9Jl-orthogonal 
Boolean locales in 9J/. Then the union of the complete Boolean subalgebras 
Bx~'S of ~(99~) for all 2 e A is a family of mutually compatible elements in 
~(gJ/) and so, thanks to Theorem 4.7, is contained by the complete Boolean 
subalgebra By of ~.(gJ/) for some Boolean locale Y in 9)l. Let lx~ be the 
unit element of r for each 2 c A .  Then it is easy to see that 
{6x;(lx;)}j+~A is a family of mutually disjoint elements in the complete 
Boolean algebra By. By conditions (3.7) and (4.4) there must exist a 
Boolean locale Z such that the image of the unit element of ~ ( Z )  under the 
mapping 6z is V~+eAfx~(lxa) and the complete Boolean algebra B z is 
generated by the sets Bx,+'s for all 2 e A. By condition (4.2) it is not hard 
to see that Z=Y'4.~A+~X;+. �9 

Corollary 4.10. The orthomodular poset 2(93/) is orthocomplete. 

Now we are going to tackle the problem in the title of this section. Let 
Jr  be the manual of Boolean localic toposes corresponding to 93l. Every 
topos N in ~g enjoys all classical mathematics (=mathematics based on 
classical logic). In particular, every J//-maximal topos X in J / h a s  its set 
R • of real numbers in ~,  which, Boolean-valued analysis (Nishimura, 
1993; Takeuti, 1978) tells us, is to be identified with the set of real-valued 
Borel functions on the Stonean space E• of the complete Boolean algebra 
f2(N), where two real-valued Borel functions on E• are identified so long 
as they coincide on 12(~) except for some meager Boret subset of f2(N). 
Thus Theorem 1.2 enables us to identify each real number r in X with an 
observable ~, on the complete Boolean algebra s We denote by e~ 
6• which is an observable on ~(gJ/). The reader might naively be 
tempted to define the set R ~t of real numbers in Jr be the disjoint union 
R (~) of R• for all JP/-maximal toposes ~ in Jg, but some identification 
in R (~) seems to be in order. As a matter of fact, Boolean-valued analysis 
tells us that if f: N -~ Y is a surjection between X-maximal  toposes in Jg, 
then a real number in Y has to be identified with its image under the 
inverse image functor if*, which is a real number in N. We denote by R ~' 
the quotient set of R ("u) with respect to the equivalence relation generated 
by the above identification, and the equivalence class of each r ~ R  (~) is 
denoted by [r] ,g.  

To make this identification intuitively appealing, consider a morphism 
f: X ~ Y of Boolean locales with N(X) = f~(N) and N(Y) = f~(Y) such that 
its inverse image function f*:f~(Y)--*f](N) corresponds to tt under 
Theorem2.6. By Theorem2.11, f* is injective. Then the so-called Stone 
duality tells us that f* induces naturally a surjective continuous function 
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f :  E• ~ E v. Since f* is a complete Boolean homomorphism, the inverse 
function 1~* of f carries meager Borel subsets of E v to meager Borel subsets 
of E • The above identification can be represented within this setting by 
the assignment to each real-valued Borel function ~o on E v of the real- 
valued Borel function ~o o f  on E • If a real number r in Y is represented 
by its observable ~r on the complete Boolean algebra s then it is easy 
to see that ~g.(r)=f*O~r, which implies that ~ . ( r ) = ~ , .  Thus, for any 
r, s ~ R  (dr), whenever [ r ] ~  = [ s ] ~ ,  ~ - - ~ s .  

Theorem 4.11. For any observable ~ on .~(gJ~) there exists an 
element r of R <~') with ~=~r .  

Proof It suffices to note by Theorem4.7 that there exists an 
931-maximal topos Z such that B• contains the range of ~. �9 

Theorem 4.12. For any elements r, s of R <~), if 0~r:~s, then 
[ring = [ s ] ~ .  

Proof Let ~ and Y be the toposes of ~ /  to which r and s belong, 
respectively. Let ~ = ~r = ~s. By Theorem 4.7 there exists a topos 7/ of ~ '  
such that Bz is generated as a complete Boolean algebra by the image of 
~. In 7/ there exists a real number t with at = ~. It is easy to see that 7/is 
an J//-quotient topos both of Z and of Y. Let ~: ~ ~ 7/ and g: Y ~ 7 /be  
the surjections ind//. Then it is easy to see that f * ( t ) = r  and ~* ( t )=s ,  
which implies the desired conclusion. �9 

By simply combining Theorems 4.11 and 4.12, we have the following 
result. 

Theorem 4.13. The assignment r sR(~ )~ - -~  r induces a bijective 
correspondence between R ~ and (9(.~(J//)). 

We conclude this section by noting that the main result of this section, 
namely Theorem 4.13, still holds literally even though we replace condition 
(4.3) by a weaker condition (4.3),, in which the existence of a common 
refinement of a compatible family of Boolean locales is required only in 
case that the family is countable. All the other results of this section still 
hold, with due but obvious modifications. 

N O T E  ADDED IN P R O O F  

To make Theorem 2.7 literally correct, we must identify two parallel 
geometric morphisms in ~3~op if they are naturally equivalent. Similar 
remarks related to this should be scattered throughout the paper. 
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